Nat 5 Circles, Solids and Similarity

1. The diagram below shows a sector of a circle, centre O.

Angle AOB = 112° and the radius is 14 cm.

Calculate the area of the sector AOB

The boat on a carnival ride travels along an arc of a circle, centre C.

The boat is attached to C by a rod 6 metres long. The rod swings from position CA to position CB.

The length of the arc AB is 7 metres.

Find the angle through which the rod swings from position A to position B.

4

3. Two congruent circles overlap to form the symmetrical shape shown below. Each circle has a diameter of 12 cm and have centres at B and D.

Calculate the area of the shape.

5

4. The diagram shows a circle centre O. AB is a diameter and C is a point on the circumference of the circle.

Calculate the size of the shaded angle.

This is the circular cross-section of a tunnel with a horizontal floor. 5.

4

AB represents the floor. AB is 2.4 metres.

The radius, OA, of the cross-section is 2.5 metres.

Find the height of the tunnel.

A Christmas bauble is made from a sphere 6. of perspex with a coloured cylinder in the middle.

> The volume round the cylinder is filled with a thick liquid.

The sphere has a diameter of 8 cm. The cylinder has a radius of 2.6 cm with a height of 6 cm.

Calculate the volume of liquid needed to fill the sphere, giving your answer correct to 2 significant figures.

The volume of this sphere is 203 cm^3 . 7 Calculate its radius, $r \, \text{cm}$, correct to 3 significant figures.

 48°

0

В

5

8. John is looking to buy a new rug for his main room. The two rugs below are **mathematically similar** in shape.

The smaller rug has an area of 48 square feet. John thinks that the area of the larger rug is at **least 72 square feet**. Is he correct? **4**

Answers

1. Area = $\frac{112}{360} \times \pi \times 14^2 = 191.6 \text{ cm}^2$

2.
$$\frac{angle}{360} \ge \pi \ge 12 = 7$$
, angle is **66.8°**

3. Shape is made up of two sectors with centre angle of 270° Area of these sectors are $2 \times \frac{270}{360} \times \pi \times 6^2 = 169.646...$

Area of central square is $6 \times 6 = 36$. Total area is **205.6** cm²

- 4. angle $ACB = 90^{\circ}$, angle $ABC = 180 (48 + 90) = 42^{\circ}$ Shaded angle $180 - 42 = 138^{\circ}$
- 5. Establish a right angled triangle and use Pythagoras $2.5^2 = 1.2^2 + b^2$, b = 2.2 m, height is **4.7** m
- 6. $V_{sphere} = 4/3 \times \pi \times 4^3 = 268 \cdot 0825731,$ $V_{cylinder} = \pi \times 2 \cdot 6^2 \times 6 = 127 \cdot 422998$ Volume = 268.0825731 - 127.422998 = 140.6595751 = **140 cm³**

7.
$$203 = \frac{4}{3}\pi r^3$$
, $609 = 4\pi r^3$; $r = \sqrt[3]{\frac{609}{4\pi}}$, \bullet^3 $r = 3.65$ cm

8. L.S.F. =
$$7 \cdot 2/6 = 1 \cdot 2$$
, A.S.F = 1.2^2 ,
Area of the larger rug is $48 \times 1.2^2 = 69.12$ square feet
John is incorrect as area < 72 square feet

Vectors

9. Vectors \mathbf{p} and \mathbf{q} are shown on the diagram below

Find the vector $\mathbf{p} + \mathbf{q}$, express your answer in component form 3

10.
$$\mathbf{a} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -2 \\ 4 \\ 10 \end{pmatrix}$, find $2\mathbf{a} - \mathbf{b}$,

express your answer in component form

2

11. Find the magnitude of vector
$$\mathbf{q} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$
 2

Answers

9.
$$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
 10. $\begin{pmatrix} 4 \\ 4 \\ -10 \end{pmatrix}$ 11. $|\mathbf{q}| = \sqrt{14}$

	Examples to read	Questions to try
1	Arc Length and Sector Area	
	Ex 9.1 & 9.2 Page 69	Q 1 Page 70
2	Find the sector angle	
	Ex 9.5 Page 73	Q1 Page 74
3	Area of composite shapes	
4	Angle properties of circles	
	Ex 21.1 - 21.3 Pages 221/3	Q 1-4 Page 224
5	Perpendicular bisectors	
	Ex 21.5 & 21.66 Pages 229/30	Q1 Page 231, Q10 Page 232
6	Volume of composite solids	
	Example 10.1 Page 76	Q 1,3,4 Page 83
7	Volume of solids	
	Example 10.2 Page 77	Q3 Page 77, Q3 Page 81
8	Similarity	
	Ex 22.2 & 22.33 Pages 242/3	Q1 Page 243, Q2 Page 244

Extra help – Circles, Solids, Similarity and Vectors

Extra help –Vectors

	Examples to read	Questions to try
9	Adding Vectors	
	Ex 28.2 - 28.4 Pages 314/5	Q1,2,4 Page 315
10	Adding Vectors in component form	
	Ex 30.2 – 30.4 Page 322	Q2 Page 322, Q4 Page 323
11	Magnitude of vectors	
	Ex 30.5 – 30.7 Pages 323/4	Q2 Page 325